Leveraging genomic prediction to scan germplasm collection for crop improvement

نویسندگان

  • Leonardo de Azevedo Peixoto
  • Tara C Moellers
  • Jiaoping Zhang
  • Aaron J Lorenz
  • Leonardo L Bhering
  • William D Beavis
  • Asheesh K Singh
چکیده

The objective of this study was to explore the potential of genomic prediction (GP) for soybean resistance against Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold (WM). A diverse panel of 465 soybean plant introduction accessions was phenotyped for WM resistance in replicated field and greenhouse tests. All plant accessions were previously genotyped using the SoySNP50K BeadChip. The predictive ability of six GP models were compared, and the impact of marker density and training population size on the predictive ability was investigated. Cross-prediction among environments was tested to determine the effectiveness of the prediction models. GP models had similar prediction accuracies for all experiments. Predictive ability did not improve significantly by using more than 5k SNPs, or by increasing the training population size (from 50% to 90% of the total of individuals). The GP model effectively predicted WM resistance across field and greenhouse experiments when each was used as either the training or validation population. The GP model was able to identify WM-resistant accessions in the USDA soybean germplasm collection that had previously been reported and were not included in the study panel. This study demonstrated the applicability of GP to identify useful genetic sources of WM resistance for soybean breeding. Further research will confirm the applicability of the proposed approach to other complex disease resistance traits and in other crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prospects of Genomic Prediction in the USDA Soybean Germplasm Collection: Historical Data Creates Robust Models for Enhancing Selection of Accessions

The identification and mobilization of useful genetic variation from germplasm banks for use in breeding programs is critical for future genetic gain and protection against crop pests. Plummeting costs of next-generation sequencing and genotyping is revolutionizing the way in which researchers and breeders interface with plant germplasm collections. An example of this is the high density genoty...

متن کامل

Development of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection

The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...

متن کامل

Plant Abiotic Stress

Abiotic stress such as cold, drought, salt, and heavy metals largely influences plant development and crop productivity. Abiotic stress has been becoming a major threat to food security due to the constant changes of climate and deterioration of environment caused by human activity. To cope with abiotic stress, plants can initiate a number of molecular, cellular , and physiological changes to r...

متن کامل

Plant genetic resources management: collection, characterization, conservation and utilization

Genetic resources provide basic material for selection and improvement through breeding to ensure food security needs of the world’s rapidly rising population. Conservation and utilization of plant genetic resources are important components of ex-situ collections. Management of ex-situ collections requires creative and adaptive decisions tailored to operating conditions that are specific and co...

متن کامل

Unlocking Diversity in Germplasm Collections via Genomic Selection: A Case Study Based on Quantitative Adult Plant Resistance to Stripe Rust in Spring Wheat.

Harnessing diversity from germplasm collections is more feasible today because of the development of lower-cost and higher-throughput genotyping methods. However, the cost of phenotyping is still generally high, so efficient methods of sampling and exploiting useful diversity are needed. Genomic selection (GS) has the potential to enhance the use of desirable genetic variation in germplasm coll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017